The generator matrix
1 0 1 1 1 0 1 1 X 1 X+2 1 1 X 0 1 2 X 1 1 1 X 1 X
0 1 1 0 X+1 1 X X+3 1 X+2 1 3 2 2 1 X+1 1 1 X+2 3 1 2 0 0
0 0 X X+2 0 X+2 X X+2 X 0 2 0 X X 0 0 X X 2 0 X X 2 0
0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 2 2 2 0 2 2 2 0
0 0 0 0 2 0 0 0 0 0 0 2 0 0 2 2 2 2 0 2 0 2 0 0
0 0 0 0 0 2 0 0 0 0 0 2 2 2 2 2 0 2 0 2 2 0 0 2
0 0 0 0 0 0 2 0 0 0 0 2 2 0 2 0 0 0 2 2 0 0 2 2
0 0 0 0 0 0 0 2 0 2 2 0 2 2 0 2 0 0 2 2 2 0 0 2
0 0 0 0 0 0 0 0 2 0 0 2 2 2 2 2 2 0 0 0 0 0 2 0
generates a code of length 24 over Z4[X]/(X^2+2,2X) who´s minimum homogenous weight is 16.
Homogenous weight enumerator: w(x)=1x^0+116x^16+236x^18+160x^19+1001x^20+928x^21+2204x^22+1984x^23+3112x^24+1984x^25+2180x^26+928x^27+1059x^28+160x^29+244x^30+83x^32+3x^36+1x^44
The gray image is a code over GF(2) with n=96, k=14 and d=32.
This code was found by Heurico 1.16 in 2.8 seconds.